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Abstract—Transferring and processing huge amounts of data in the cloud can violate the low latency requirements of modern IoT
applications, considering underlying network infrastructure limitations. Edge data analytics is a promising solution. However, edge
resources have usually less computational capabilities than cloud nodes, resulting in a higher failure rate of IoT systems.
Consequently, near-real-time decisions are often based on limited and incomplete data. State-of-the-art solutions, such as
operational/workload flows, data reduction, reconstruction, focus mostly on resource and network optimization, while approaches for
incomplete data recovery employ a single specific method, despite diverse data characteristics. Data quality impact on accuracy of the
decision-making processes is often neglected. We propose EDMFrame, a framework featuring a generic mechanism for recovery of
multiple gaps in incomplete datasets, using single-technique recovery (STR) and multiple-technique recovery (MTR) involving
projection recovery maps (PRMs). We further devise an adaptive storage management mechanism for reducing data stored at the
edge, keeping only the data necessary for predictive analytics. We conduct experiments using time series from smart buildings, (i)
automatically recovering various multiple gaps and reducing errors up to 65.48% with MTR compared to STR; (ii) reducing amounts of
data stored to 39.9% on average, keeping prediction accuracy around 98.83%.

Index Terms—Edge computing, Internet of Things, data, storage, forecasting, solution reference architectures, data flow architecture.
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1 INTRODUCTION

THE Internet of Things (IoT) has attracted attention from
both academia and industry. Billions of devices will

be connected to the Internet by 2020 [1], generating huge
amounts of data. Today, IoT sensors are used in many ap-
plications, like eHealth [2], smart manufacturing [3], smart
home and building systems [4], and smart cities [5]. These
systems require sensors data collection, data analysis and
acting based on the results of analysis. Usually, IoT data are
processed in geographically distributed and distant cloud
data centers [6], [7]. However, cloud data processing perfor-
mance is affected by the increased size of data and due to
the limited scalability of current network infrastructures [8].
Also, respecting critical predictive analytics in modern IoT
systems, meeting the strict latency and accuracy require-
ments [9] of decision-making processes imposes new issues.

Edge analytics is a promising solution to latency and net-
work size challenges by employing edge nodes, i.e., smaller
scale cloud data centers deployed closer to IoT sensors [10].
Performing data processing in edge nodes allows near real-
time decisions for IoT systems [11]. However, edge analytics
has many open challenges. First, missing or invalid data
may appear, due to monitoring system failures; data packet
loss; sensor aging; or changes in external conditions [12].
Performing analytics on incomplete data can lead to inac-
curate decisions [4], [13]. Second, compared to cloud data
centers, edge nodes have limited storage and scalability
affecting the accuracy of predictive analytics and, conse-
quently, decisions for critical applications such as smart
buildings [4] or manufacturing systems [3].

1.1 Edge Data Management Solutions and Limitations
There are different data management strategies for IoT and
edge systems, considering IoT requests offloading [14], IoT

I. Lujic, V. De Maio and I. Brandic are with the Institute of Information
Systems Engineering, Vienna University of Technology, A-1040 Vienna,
Austria. (e-mail: {ivan, vincenzo, ivona}@ec.tuwien.ac.at)

resource management [2] and IoT security mechanism [15].
However, mentioned solutions focusing on QoS for dis-
tributed edge data processing, workload management and
ensuring security of IoT sensitive data rather than focusing
on data reconstruction and storage management. Although
some works propose various reconstruction methods of
incomplete datasets [16], [17], they do not distinguish re-
covery of various gaps, despite diverse data characteristics.
We argue that for timely and accurate data recovery in
modern IoT systems, it is necessary to combine different
recovery techniques, even within the same datasets. Predic-
tive analytics has a huge potential to revolutionise critical
and proactive IoT applications, such as accurate diagnosis of
patients in eHealth, maintenance services and failures pre-
vention in smart manufacturing and building systems. For
decision-making processes, Sensor-Cloud Infrastructure [18]
is a promising solution. Other works like [19], [20] discuss
IoT sensor data reduction and dynamic compression tech-
niques, focusing on network optimizations. Still, there is a
lack of solutions for accurate predictive analytics while deal-
ing with incomplete data and limited edge storage capabili-
ties. Traditional approaches for IoT and cloud data manage-
ment address the challenges related to incomplete datasets
and storage limitations [6], [7], [21], without considering
the impact of data quality and data resilience on decision-
making processes, which is of paramount importance to
ensure efficient and accurate analytics in IoT systems [22].

1.2 Main Contributions
We bridge these gaps by introducing Edge Data
Management Framework (EDMFrame1), a three-layer archi-
tecture model for resilient edge data management. The main
contributions of this work are:
• a novel, generic mechanism for adaptive recovery of

incomplete time series, incorporating a recovery cycle

1 https://github.com/lujic/EDMFrame
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that ensures outliers removal, detection, and forecasting
of each gap, using single-technique recovery (STR);

• an edge storage management mechanism that achieves
a trade-off between the amount of data stored at the
edge and high accuracy for predictive analytics;

• a mediator component featuring Projection Recovery
Maps (PRMs) that detect the necessary range of histor-
ical data to recover different gaps for each dataset, as
well as the recommended recovery technique, enabling
multiple-technique recovery (MTR).

Preliminary results for the first and second contribu-
tions are shown in [23], [24], respectively. In this paper,
we describe the complete framework, introduce the novel
mediator component and show an entire data path through
EDMFrame. We evaluate EDMFrame experimentally us-
ing six sensor-based time series from smart buildings and
homes. Results show that EDMFrame can: (i) automatically
recover gaps of various lengths with STR and achieving
up to 65.48% less error with PRM-based MTR compared
to STR; and (ii) reduce the amount of data stored to 39.9%
on average per cycle, while obtaining prediction accuracy
around 98.83%, thus storing only data relevant for predic-
tive analytics at the network edge. In contrast to existing
frameworks, such as [2], [4], [20], we enable (i) a generic
data recovery, adaptable to different IoT data sources, and
(ii) reliable decision-making for crucial predictive analytics
in the context of storage-limited edge nodes.

We describe EDMFrame model in Section 2. Section 3
presents data recovery mechanism, while Section 4 shows
the edge storage management algorithms. Section 5 de-
scribes the novel mediator component. Experimental eval-
uation and discussion are shown in Section 6. Related work
is outlined in Section 7, and Section 8 concludes the paper.

2 ARCHITECTURE MODEL OVERVIEW

Figure 1 shows an overview of EDMFrame architecture
model. At the time we write, several frameworks for
IoT data processing have been proposed, such as Eclipse
Kura (https://www.eclipse.org/kura/), Node-RED (https:
//nodered.org/) and Flogo (https://www.flogo.io/). most
of these frameworks focus on integrating heterogeneous
IoT devices and on the interplay between the edge and
cloud layers. They either do not provide methods for data
recovery and predictive analytics, or they focus only on a
specific technique for performing these tasks. Complemen-
tary to these works, we design EDMFrame as a service built
on top of these or similar IoT data processing services, to
enhance the data recovery and analytics features they offer.
The aim is to devise a process to deliver accurate near real-
time decisions while coping with (i) incomplete data, (ii)
big volume of data and (iii) limited storage resources at
the network edge. The architecture includes three software
layers, namely: gathering layer, edge layer, and cloud layer.
Even though the main focus of this paper is the edge layer,
we describe all of them for completeness.

Gathering layer transmits IoT measurements to the edge
layer to reduce communication costs, save bandwidth and
meet latency requirements in distributed sensor networks.
Gateways at this layer can aggregate sensor data sending
them in an appropriate format and size to the monitoring
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Fig. 1. EDMFrame overview, based on smart buildings example.

component. In step (1) data are collected from smart build-
ings and then in step (2) transferred to the edge layer.

Edge layer manages data through different stages of
EDMFrame, to perform accurate and timely analytics. It is
composed of edge nodes, e.g., edge servers and micro data
centers [10], aiming to perform data processing closer to
data sources. EDMFrame includes the following elements:

Monitoring component. This component (i) receives and
analyses data to detect outliers and missing values, (ii)
notifies mediator component about incomplete data, (iii)
prepares data for the data recovery mechanism and (iv)
triggers IoT actuators based on local edge analytics. It can
also extrapolate data characteristics for further analytics.

Specification list. Once data are transmitted to the edge
layer, user specifications are checked in step (3). Specifica-
tion list contains application-dependent and user-defined
parameters, useful for both data recovery and edge data
management process (e.g., forecast horizon, monitoring fre-
quency, forecast method, accuracy threshold, conditions).

Data recovery mechanism. The adaptive recovery process
is performed in step (4). It receives data from the monitoring
component and performs semi-automatic recovery of mul-
tiple gaps incorporating recovery cycles (see Section 3). The
output is a dataset without gaps and cleaned from outliers.

Storage. Edge storage carries limited capacities. It stores
data coming from the data recovery mechanism and com-
municates with the edge storage management, mediator
component and local edge analytics processes.

Edge storage management. In step (5), edge storage man-
agement mechanism maintains limited storage keeping only
data relevant for near real-time decisions. It checks available
data, validates the specification list and implements the
storage management phases (see Section 4). The available
data are used in step (6) for local analytics, whose output
is forwarded either to the storage or to the monitoring
component sending commands to actuators in step (7).

Mediator component. The mediator manages PRMs to
support data recovery mechanism (see Section 5). In step
(8), mediator component communicates with the cloud data
repository. It transfers the necessary data from/to the cloud.
It can perform data filtration and data transformation to
improve data transfer between edge and cloud layer.

Cloud layer contains the data repository, storing histor-
ical data collected from IoT systems. It performs compute-
intensive big data analytics based on entire datasets.

Sections 3, 4 and 5, detail all edge layer components. We
design an experimental implementation as a pipeline with
the core algorithms: monitoring component (Algorithm 1),



3

TABLE 1
Main Notations and Definitions

Notation Description
Din Matrix that represents incomplete input data.
Dfr Matrix that represents framed (prepared) data to be stored.
ω Vector that contains all indexes of missing values.

nom Variable that counts number of missing values (based on ω).
ω̂ Vector that stores indexes of the current gap (ω̂ ⊂ ω).
γ Vector containing forecast accuracies from the iteration phase.
vγ Standard deviation (volatility) of the entire vector γ.
sf Scaling factor dividing vγ to set threshold for finding clusters.

CLth Threshold in identifying stable accuracy clusters.
∆γ
v Set of standard deviations calculated from the sampled γ.
C Matrix containing detected stable accuracy clusters.
facth Forecast accuracy threshold.
CLap Appropriate cluster with stable forecast accuracy.
fh Forecast horizon - the amount of data as prediction length.
Sd Array representing available dataset in storage.
df Decrement factor that decreases available dataset Sd.
dfpct Decrement factor percentage.

data recovery mechanism (Algorithm 2) and edge storage
management (Algorithms 5 utilizing Algorithms 3 and 4).
Table 1 lists the main notations used hereafter.

3 DATA RECOVERY MECHANISM

We present an adaptive mechanism for time series recovery.
First, we define a gap as a sequence of one or more missing
or invalid consecutive values, distributed in time series.
Missing values occur due to sensor or monitoring failures.
Invalid data represent outliers due to measurement errors.
Definition 1. A gap Gkn represents the n-th gap in an incomplete

dataset with k missing/invalid values.

For example, G17
2 refers to the second gap with 17 missing

values. In Figure 2, we provide a flowchart of the proposed
recovery mechanism. First, data are prepared in the moni-
toring component. To this end, data indexes from each gap
in the dataset are detected and marked in the data prepa-
ration module. Then, the recovery cycle starts by detecting
the amount of missing/invalid values. The cycle terminates
when there are no more missing values. Otherwise, the gap
identification component detects the size of the current gap,
selecting it for the current recovery cycle. The data processor
component analyses data points preceding the current gap,
that are important for the setup of the forecasting process,
including user specifications. Then, necessary data and tech-
nique selected from the repository are forwarded to the
forecasting process. Once the gap is recovered, conditions
for the next recovering cycle are checked. The following
subsections describe all components in detail.

3.1 Data Preparation

The goal of this component is to prepare an incomplete
dataset for the recovery process. To this end, we apply a set
of operations that detect each gap in the dataset. The data
preparation process is described in Algorithm 1. First, line 1
creates an empty vector for indexes of missing values in the
dataset. Outliers are identified according to minimum and
maximum values, for particular sensors, that can be either
application-dependent or predefined by the user. If a data
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Fig. 2. Adaptive edge data recovery mechanism flowchart.

Algorithm 1 DataPreparation
Input: Din[timestamp, value], Dfr[timestamp, ]
Output: vector ω
1: Create vector ω
2: Replace all outliers by a missing value indicator NA (based on thresholds)
3: i← 1; j ← 1
4: while i ≤ length(Din) do
5: if Dfr[j, 1] = Din[i, 1] then
6: Dfr[j, 2]← Din[i, 2]
7: i← i+ 1; j ← j + 1
8: else
9: Dfr[j, 2]← NA

10: Add index j in vector ω
11: j ← j + 1
12: end if
13: end while
14: nom← length(ω)

value is out of bounds, it is replaced by a missing value
indicator such as NA (Not Available) (line 2), so that the
correct value can be efficiently estimated in the recovering
cycle. Missing values can occur for different reasons, like
system or sensor failures. Once the system/sensor is recov-
ered, the next received data point is stored right after the last
generated timestamp. Therefore, to identify a gap, it is nec-
essary to check timestamps. We propose a solution where
the monitoring component receives data and stores either
corresponding data value or NA for each created timestamp
(lines 4-13). Counters i and j (line 3) count data from input
and preparedDfr , respectively. If timestamps fromDfr and
Din match (line 5), the data point is moved toDfr beside the
corresponding timestamp (line 6). Otherwise, NA is stored
(line 9), and the index of a missing data point is moved to the
created vector ω (line 10). Once the while loop terminates,
the vector ω contains all indexes of missing data, the amount
of which is placed in the variable nom (line 14).

3.2 Gap Identification
The gap identification phase (see Algorithm 2) is respon-
sible for detecting multiple gaps in a given dataset. It
identifies the limits of each gap, using this information for
the recovery process. Each gap is processed separately, to
enable the selection of an appropriate forecasting technique
based on characteristics of previous data or user predefined
specifications. The counter i (line 1) is used to iterate over
the vector ω, while data index of the first missing value is
copied to the beginning of the vector ω̂ and stored also in
the variable t (lines 2-3). As long as there are missing values
in nom (line 4), the counter i looks for the next index of
missing value, while the index stored in the variable t is
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Algorithm 2 GapIdentification
Input: Vector ω, variable nom
1: i← 1
2: ω̂[i]← ω[i] . Create vector ω̂[] storing missing indexes of current gap
3: t← ω[i] . Create temporary variable t and store first missing index
4: while nom > i do
5: i← i+ 1; t← t+ 1
6: if t = ω[i] then
7: ω̂[i]← ω[i]
8: else
9: Remove indexes of ω̂ from ω

10: break;
11: end if
12: end while

incremented by 1 (line 5). It allows to check whether a gap
of consecutive missing values exists (line 6). If indexes are
consecutive, the corresponding index is copied to the vector
ω̂ (line 7). Otherwise, all missing values from the current
gap are detected, and the vector ω is updated in line 9.

3.3 Data Processor
This component performs extrapolation of data characteris-
tics and parameters needed for the utilization of particular
forecasting methods. Necessary characteristics are obtained
during the analysis of available data preceding the first
missing index of the current gap, that is identified in the pre-
vious component. To efficiently forecast NA marked gaps,
predecessor data are analyzed to derive parameters neces-
sary to the forecasting process. Parameter selection depends
on the forecasting technique. Semi-automatic mechanism
allows two scenarios: (i) single-technique recovery (STR) and
(ii) multiple-technique recovery (MTR). In the first scenario, a
single technique, that can be specified by users, is used to
recover all gaps. In the latter scenario, a technique is selected
for different gaps. Currently, we assume that techniques are
predefined by users in the algorithm repository.

3.4 Forecasting Process
In this component, a forecasting technique is selected from
the repository and applied to the current gap. Figure 3
shows the adaptive recovery process including results of
aforementioned components. After corresponding missing
indexes are stored by the preparation component and the
first gap identified by the gap identification component,
the data processor analyzes predecessor data before the
gap. Selected forecasting technique is then applied for the
recovering process. The figure shows our approach, where
forecasting process component applies different techniques
(t1, t2, and t3) for different gaps. The choice of suitable
techniques depends on data characteristics and forecast ob-
jectives as described in [25]. Here, we select two techniques,
according to different dataset characteristics: (i) the Autore-
gressive Integrated Moving Average (ARIMA) method can
be used if data contain stationary characteristics, such as
trend stationarity, that can be explored by methods pro-
posed in [26]; (ii) the Exponential Smoothing method (ETS),
although overlapping in some cases with ARIMA model,
can be used for short-term seasonal series or with multiple
complex seasonality [27]. If seasonality occurs in time series,
by checking periodicity, the data processor can forward that
information to the next component. Users can also specify
additional information about the data, such as a monitoring
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Fig. 3. Forecasting process of adaptive data recovery for multiple gaps.

frequency, e.g., if temperature data are collected every five
minutes, then the seasonal parameter value 288, represent-
ing the expected daily seasonality (12 · 24), is included in
the forecasting procedure. Once all necessary parameters are
forwarded from the data processor, the forecasting process
can start. Missing values are replaced in the original dataset,
and their indexes are removed from the vector ω. Once
the current gap is recovered, the next gap (if exists) is
considered in a new cycle. The recovering process stops
when no more missing values are left in nom.

3.5 Algorithm Complexity

By looking at the while loop in line 4 of Algorithm 1, we
see it iterates over available dataset making it O(n), where n
represents a number of data points in the acquired dataset.
Further, entering the while loop of Algorithm 2 (line 4), it
iterates the vector of indexes of missing values that are
always less than the amount of data in Sd. The other lines
require O(1). In case the forecasting process uses ARIMA
based models, the time complexity is O(n2), where n is
the size of data, resulting in the overall complexity O(n2).
Running time is affected by different factors such as the size
of the gap that has to be recovered, the amount of available
historical data (finding an optimal trade-off between the gap
size and necessary amount of historical data is given by the
mediator component in Section 5) or seasonal complexity of
time series. Since the proposed mechanism targets resource-
limited edge nodes and analysis for near real-time decisions,
we expect that the input size and dimensionality of incom-
pleteness will not cause a violation of latency requirements.

4 EDGE STORAGE MANAGEMENT

Effectiveness of a limited edge storage depends on the abil-
ity to determine the amount of necessary data to perform ac-
curate near real-time decisions. Hence, an edge node should
keep only relevant data for local data analytics, discarding
or transferring the rest if they are irrelevant. Based on the
architectural model (see Figure 1), we describe edge storage
management phases, as shown in Figure 4, namely:

Learning phase. This phase derives information about
data, such as time series pattern recognition, used to de-
termine the most appropriate method for that specific pat-
tern [28], or seasonality over a certain period, used to set up
a forecast method [29]. This phase is executed only once and
provides information used by all the other phases.
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Validation of the specification list. This phase checks
the user-defined specification list. During the execution of
the proposed algorithm, users can update the specification
list anytime, e.g., setting forecast accuracy threshold, a new
forecast horizon or different forecast methods. This list has
to be checked each time a cycle starts since any changes
made to it can affect the whole edge storage management.

Multiple forecast iteration on the available dataset.
This phase takes one of the forecasting methods (in our case
ETS or ARIMA) with accuracy threshold (facth ) and forecast
horizon (fh) from the specification list. The available dataset
is divided into training and test data. Test data are equal
to the number of data points specified by the user in the
specification list (i.e., fh). The amount of training data is
reduced in each iteration by a certain amount of data to find
parts of the dataset resulting in required forecast accuracy.
At the end of each iteration, forecast accuracy measures are
added in the vector γ to be used in the next phase.

Detection of stable accuracy clusters. Here, stable clus-
ters of accuracy values have to be found in the vector γ.
Definition 2. We define a stable cluster CLst as a set of subse-

quent data points in the vector γ whose standard deviation for
contained values is less than a given percentage CLpct of the
standard deviation of entire vector γ, that is,

CLst ⊂ γ AND sd(CLst) < CLpct ∗ (sd(γ)) (1)

We define that a cluster contains at least three members.
To provide reliable information regarding future system be-
haviors, our predictions must be stable. When the multiple
forecast iteration process is finished, cluster detection is
applied on the vector, which consists in measuring forecast
accuracy from each of forecast iterations. The method finds
stable clusters of forecast accuracies close to the threshold
defined in the specification list (see Section 4.1).

Detection of an appropriate cluster. Previous step can
return more than one stable cluster, therefore we define how
to select the most appropriate one. Stable clusters can differ
in mean value and the amount of used data. Therefore,
selection priorities have to be set. We propose the twofold
priority for cluster selection and a corresponding algorithm.
First priority is to satisfy user-specified threshold. Formally:
Definition 3. A stable cluster C[i] of forecast accuracies is

appropriate if its mean value (C[i]m v) is the closest to the
accuracy threshold facth from the specification list, namely,

CLap = arg min
C[i]

(|C[i]m v − facth |) (2)

We select, as appropriate cluster CLap, the one with mini-
mum absolute difference between facth and C[i]m v . If there

are clusters with higher accuracy, we select the one using
less data, regarding second priority (see Section 4.2).

Data management action. This step releases irrelevant
data from the storage. According to the appropriate cluster,
we define that the central data index of this cluster indicates
a border between relevant and irrelevant data. There are
three possible cases: (i) We can reach an appropriate clus-
ter among stable clusters respecting the desired accuracy
threshold with fewer amount of data. In this case, all data
not needed to obtain the observed accuracy cluster are
released; (ii) None of the resulting stable clusters meets
the specified accuracy threshold by the client. In this case,
data management action will select the one with fewer data
points; (iii) Forecast accuracy of stable clusters is higher with
an increased amount of training data, e.g., forecast based on
all available data from the storage. In that case, the mediator
component can retrieve more data from the cloud repository.

Validation of available dataset. The adaptive algorithm
is continuously repeated and in each cycle checks storage
for newly collected data. Depending on application and data
generation rate, the next cycle of edge storage management
can act as a triggered event. In the next cycle, data received
from the recovery mechanism and, potentially, from the
mediator component, are included. The relevance of old
data can be lower unless the prediction accuracy level shows
that some stable clusters occur based on these data. In that
case, if algorithm feedback shows that accuracy increases
with historical data and the amount of currently stored data
exceeds edge storage limitations, this data processing can
be performed in the cloud. Hence, the approach requires to
monitor accuracy rate variations for performed forecasts.

4.1 Detection of Stable Clusters

Detection of smooth behaviors for consecutive forecast ac-
curacies, calculated in the forecast iteration phase, presents
the cornerstone of our algorithm. There are many clustering
techniques [30] such as partitioning, hierarchical or density-
based, but they are not suitable for our case, because often
they require specification of a certain number of clusters
beforehand as well as separating the entire dataset based
on similarity. Our case requires a dynamic approach which
discovers as few clusters as possible based on Definition 2,
and considering only corresponding parts of the entire
dataset. The process consists of three steps: first, we calcu-
late the overall standard deviation for all forecast accuracies
and mark it as a baseline. Second, forecast accuracies are
grouped into clusters of fixed length and standard deviation
is calculated per cluster. Third, obtained deviations are com-
pared to the baseline considering the previously calculated
threshold. Consequently, stable clusters show where the
forecast accuracies are stable. Pseudo-code for detecting
stable accuracy clusters is presented in Algorithm 3. The
method requires vector γ consisting of forecast accuracy
measures (MAPA) from the forecast iteration process and
scaling factor sf that is used for the threshold calcula-
tion. The threshold CLth differs between different datasets,
because each measurement has its scale of values with
unpredicted volatility. Based on experiments, by default the
scaling factor is always equal to 5 in the first attempt of
stable clusters detection. This means that only stable clusters
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with CLpct equal to 20% (see Definition 2) of the baseline
standard deviation will be selected. However, even with a
fixed threshold it is possible to have no clusters. In case
it is impossible to meet any stable clusters for the speci-
fied threshold, i.e., since forecast accuracies show greater
dispersion, the threshold is increased and the process is
repeated. For example, decreasing the scaling factor from 5
to 4, the CLpct becomes 25% of the baseline for detecting
stable clusters, by setting in Algorithm 5. In line 1, the
algorithm calculates standard deviation of the entire vector
γ and divides the result (line 2) by scaling factor sf to set a
threshold CLth for finding clusters. In line 3, standard devi-
ations will be calculated for each of grouped iteration results
in a sliding window in vector γ and then stored to vector
∆γ
v . Before searching for stable clusters, algorithm initializes

two counters and creates an empty matrix in lines 4-5, i.e.,
counter i will count clusters in ∆γ

v and counter j will denote
recognized stable clusters in matrix C including attributes:
mean value of forecast accuracies, and corresponding ranges
of cluster indexes. To detect stable clusters, the algorithm
starts from the beginning of ∆γ

v (line 6) and checks if a stan-
dard deviation of the first cluster is below threshold CLth
(line 7). If a cluster is recognized as stable, corresponding
data will be added to C (lines 8-11). In some cases, stable
clusters can be wider, so it is necessary to check the neighbor
cluster (line 12), and if the new one is recognized as stable
(line 13), it will continue to check other neighbors (line 14).
For each next cluster recognized as stable, existing cluster is
extended updating its corresponding mean value and end
index (lines 15-16) and checks the next one (line 17). When
there are no more stable clusters in a row, a place for a new
stable cluster is prepared increasing counter j in line 19. In
case the next cluster is not recognized as stable (line 20), the
algorithm will simply close the existing cluster and check
the next one (line 21). For each non-stable cluster (line 23),
the algorithm will increment counter i (line 24) and loop
back to line 6. Finally, matrix C, whose rows represent stable
clusters with the attributes, is returned.

4.2 Detection of the Appropriate Cluster
The cluster selection process is described in Algorithm 4.
It starts by checking the amount of stable clusters. The
else branch in line 11 is executed only if one stable cluster
is recognized and it will become the appropriate cluster
(line 12), otherwise, the algorithm will find the appropriate
cluster (lines 2-10). Considering the first priority, the appro-
priate cluster becomes the one that is closest to the specified
accuracy threshold (line 2). Further, all stable clusters (line 3)
that have better accuracy than selected CLap, i.e., higher
mean value, and whose start index begins after end index
of selected CLap (line 4), become potential appropriate
clusters (line 5). If there are such clusters (lines 8-10), the
one including less data, i.e., which has the lowest start
index (line 9), is selected as a new appropriate cluster CLap.
Finally, appropriate cluster CLap is returned in line 14.

4.3 Adaptive Algorithm
The adaptive algorithm integrates all design principles
shown in Figure 4, and includes calls on described Algo-
rithms 3 and 4. Algorithm 5 requires a forecast horizon

Algorithm 3 DetectionOfStableClusters
Input: Vector of iteration results γ, scaling factor sf
Output: Matrix C
1: vγ ← sd(γ) . Calculate standard deviation (volatility) of entire vector γ
2: CLth ←

vγ
sf

. Calculate threshold CLth
3: Create vector ∆γ

v storing STDs of sliding windows (length 3) on vector γ
4: i← 1; j ← 1 . Initialize counters i and j
5: Create matrix C forming mean value, start and end index of stable clusters
6: while i < length(∆γ

v ) do
7: if ∆γ

v [i] < CLth then . Satisfying conditions in Equation 1
8: Add cluster in C such that
9: C[j, 1]← mean value of corresponding range in γ

10: C[j, 2]← start data index of corresponding range
11: C[j, 3]← end date index of corresponding range
12: i← i+ 1 . Incrementing i to check next potential cluster member
13: if ∆γ

v < CLth then . Satisfying conditions in Equation 1
14: while ∆γ

v [i] < CLth do
15: Update mean value C[j, 1]
16: Update end index C[j, 3]
17: i← i+ 1
18: end while
19: j ← j + 1
20: else
21: i← i+ 1; j ← j + 1
22: end if
23: else
24: i← i+ 1
25: end if
26: end while
27: Return C

Algorithm 4 DetectionOfTheAppropriateCluster
Input: Matrix C, accuracy threshold facth
Output: Appropriate cluster CLap
1: if C has more than 1 cluster then
2: Compute CLap using Equation 2
3: for each cluster i ∈ C do
4: if C[i]m v > CLm v

ap AND C[i]start index > CLend indexap then
5: Add C[i] to temporary matrix A
6: end if
7: end for
8: if A is not empty then
9: CLap ← Ai with minimum starting index

10: end if
11: else
12: CLap ← C[0]
13: end if
14: Return CLap

Algorithm 5 AdaptiveAlgorithm
Input: forecast horizon fh, accuracy threshold facth , storage data Sd
1: Calculate df using Equations 4 and 5
2: while length(Sd) > 2 ∗ fh do
3: Perform method (Sd, fh)
4: Calculate MAPA (See Equation 7)
5: Add MAPA to vector γ
6: Sd ← Sd decreased by df
7: end while
8: sf ← 5 . Set threshold on 20% of overall standard dev., i.e., 1

5 )
9: C ← DetectionOfStableClusters(γ, sf )

10: while C is empty do
11: sf ← sf − 1 . Decrease scaling factor sf
12: C ← DetectionOfStableClusters(γ, sf )
13: end while
14: CLap ← DetectionOfTheAppropriateCluster(C, facth ) . Find CLap
15: Release data from S in range between the oldest and the central index of the

appropriate cluster CLap, retaining only relevant data in the storage.

fh and accuracy threshold facth that are specified in the
specification list, and array Sd that denotes data available
in storage. As shown in Figure 4, the learning phase helps
to select and set up the appropriate method. One of the
possibilities is to find periodicity as a necessity to determine
the seasonality and thereby to make a better forecast, as
described in [31]. Next, at the beginning of the algorithm,
the decrement factor df is calculated utilizing Equations 4
and 5. The calculated df will be decreasing storage data Sd
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in the multiple forecast iteration phase. Forecast iterations
(lines 2-7) will continue until the amount of data in Sd
becomes less than the two lengths of a forecast horizon
(more details in Section 4.3.1). Appropriate forecast method
uses storage data Sd and other attributes (e.g., periodicity),
to make prediction for defined forecast horizon fh and
calculates Mean Absolute Percentage Accuracy (MAPA) (see
Equation 7) in lines 3-4. At the end of each iteration, the
MAPA is stored in vector γ (line 5) and a certain amount
of old data is removed (line 6) based on decrement factor
df . Next, for the detection of stable accuracy clusters phase
(lines 9-13), scaling factor sf is set to number 5 representing
the impact of 20% in determining the threshold for find-
ing stable clusters in Algorithm 4. If any stable cluster is
recognized, the matrix C gets corresponding information
(line 9): mean value, start and end index of the cluster.
Otherwise, if stable clusters cannot be found (line 10), the
algorithm will decrease the sf and keep looking for the
clusters (lines 11-12). Line 14 finds the appropriate cluster
CLap. Finally, data in array Sd are released in range between
the oldest index and the central index of the appropriate
cluster CLap (line 15). Adaptive algorithm repeats itself
based on demands in the specification list.

4.3.1 Optimal Parameter Settings
Our goal is to set up necessary parameters enabling con-
tinuous operation of the edge storage management mecha-
nism. To allow proper performance of proposed algorithms,
storage must always contain enough data for training, plus
additional test data (amount of which is equal to defined
forecast horizon), and there must be enough number of
forecast iterations in each cycle to find stable clusters. This
is ensured by keeping training data as

T = 2 ∗ fh + k, k ≥ 3 (3)

where T denotes the amount of training data points, fh
denotes a forecast horizon that is application dependent and
given in the specification list (see Figure 1), and k is a natural
number. Based on Equation 3, there will always be at least 4
forecast iterations resulting in 4 MAPA measures as a basis
for finding at least one stable cluster (see Definition 2).

Also, running time depends on the number of multiple
forecast iterations, which is affected by the decrement factor
df , calculated using Equations 4 and 5:

ψ = round(dfpct ∗ (T − 2 ∗ fh)) (4)

df =

{
ψ, if ψ >= 1.

1, otherwise,
(5)

where round() is a function that rounds the result half
away from zero to integer and dfpct is decrement factor
percentage. In order to set optimal value for dfpct, we
performed experiments using all possible ranges of dfpct
on different datasets. The evaluation is done on 144 data
points, representing data collected every 5min over 12h with
1h forecast horizon, satisfying Equation 3 to have enough
iterations to find stable clusters. Thus, maximum dfpct of
30%, that is a representative from a range of 26%-33%, gives
the necessary 4 forecast iterations. Results showed that as
dfpct becomes very low (1%-2%) and very high (8%-30%),

the algorithm cannot always find stable clusters in the first
run of calculation (Algorithm 5, line 8) while at the same
time having a number of clustered MAPA measures near
100%. Among rest dfpct values, to find a setting that releases
more data without significantly decreasing the accuracy of
the appropriate cluster, we set dfpct at 3% resulting in 34
iterations on average. Further, we assume that the prediction
of data, potentially containing seasonality, requires at least
twice as many data points compared to the forecast horizon.
This assumption is derived from the constraint that the
prediction of one period of seasonal time series requires at
least two periods of prior data. Therefore, to calculate the
df , the training dataset is reduced by two lengths of the fh.

4.4 Complexity Analysis

Considering Algorithm 5, its complexity is O(n2), where
n represents the size of data. ARIMA method (line 4) has
O(n2) complexity and the outer while loop (lines 2-7)
iterates the entire dataset until n is equal to the two lengths
of the specified fh. In the worst case, it is decreased by 1 at
each iteration, leading to a O(n). Further, both Algorithms 3
and 4 have the complexity of O(n). The while loop (line 6)
from the Algorithm 3 iterates over the size of the vector
∆γ
v . The inner while loop (line 14) uses the same counter as

the outer loop resulting in the same O(n) and decreasing
the space complexity by not creating new objects in line 8.
Algorithm 4 instead iterates over each cluster in the for
loop in line 3, whose number is always less than n. Other
operations have either aO(1) or aO(n), resulting in aO(n2)
time complexity. Such complexity can be reduced by using
less accurate forecasting methods. Even though O(n2) is
not suitable for big datasets, it provides acceptable response
time in this context since we target edge storage.

5 MEDIATOR COMPONENT

Storage space limitations on edge nodes prevent keeping all
measurements. Many IoT systems require both local edge
and global batch data analytics [11], [32]. Consequently,
an edge node can keep only relevant data, and send all
acquired data to be integrated into the cloud data repository.
Once historical data are available in the cloud, batch analyt-
ics can be applied. By using historical data it is possible to
calculate the Projection Recovery Map (PRM), which recom-
mends ranges of data for recovering gaps of various lengths,
as well as the appropriate recovery technique for each
dataset. In this context, the proposed mediator component
can either employ cloud-based PRMs to improve recovery of
gaps detected by the monitoring component (see Figure 1),
or transfer data considering local analytics requirements. In
both cases the mediator can retrieve necessary data from the
cloud, storing them locally when needed. Here, we describe
the first case. Regarding PRMs, recommended ranges of
data for certain lengths of detected gaps can be found by
slightly modifying edge storage management mechanism
(Algorithm 4). Selecting the appropriate cluster CLap med
means selecting a cluster with the highest accuracy:

CLap med = arg max
C[i]

(C[i]mean value) (6)
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TABLE 2
Main Characteristics of Datasets

Source Dataset Sensor type Range of values Volatility [SD]

1
h 1 heat index [F] 52.11-88.79 8.74
h 2 room temp. [F] 68.90-79.70 2.51
h 3 RH [%] 30.2-92.7 18.52

2
b 1 el. meter [kWh] 19.86-19.97 0.04
b 2 flow temp. [C] 41.3-48.1 1.32
b 3 IAQ [ppm] 458.11-707.88 62.53

In this case, we employ a priority criteria different from
Section 4.2. Once the CLap med is detected, bounds (up-
per and lower) for the amount of used data points and
corresponding MAPA measures are stored. This process
is repeated with multiple-recovery techniques (MTR case)
over consecutive gap lengths and then merged in a PRM for
each dataset. In extreme cases where big gap lengths are ex-
pected, PRM can be calculated over non-consecutive num-
ber of missing values and, if required, interpolate ranges
that are not calculated. To check the accuracy of PRM-based
MTR, we test it on available historical data (Section 6.4).

6 PERFORMANCE EVALUATION

EDMFrame is simulated using R on a 64-bit Windows 10 PC,
with a 2.70-2.90 GHz Intel i7-7500U CPU and 16 GB RAM.

6.1 Data and Measures

We evaluate our approach on sensor-based time series
data, typical in IoT applications like smart buildings and
homes [4]. The main characteristics of datasets are presented
in Table 2. Datasets h 1-3 contain traces from the Smart*
project [33] for optimization of energy consumption in smart
homes, obtained by UMass Trace Repository [34]. They
represent various environmental and electrical data, such
as temperature, relative humidity, wind information, and
heat index. Datasets b 1-3 come from the monitoring system
of Austria’s largest Plus-Energy Office High-Rise Building.
These datasets contain various measurements used for au-
tomatic heating, cooling, ventilation, energy management
(e.g., temperature, indoor air quality, electricity consump-
tion, and production). We use Mean Absolute Percentage Er-
ror (MAPE) for forecast accuracy evaluation among different
datasets, due to its scale independence. We also define Mean
Absolute Percentage Accuracy (MAPA) as in Equation 7:

MAPA(Y, Ŷ ) = 100− MAPE(Y, Ŷ ) (7)

where MAPE(Y, Ŷ ) is equal to 100
n

∑n
i=1 |

(yi−ŷi)
yi
|, Y and Ŷ

are respectively the sets of actual values and their forecasts,
n is the number of data points, yi − ŷi is the forecast error,
yi and ŷi are respectively the i-th value of y and its forecast.

6.2 Data Recovery Process

We evaluate the applicability of the proposed approach (see
Section 3) by recovering multiple gaps in different datasets.
We see an example in Figure 5. The upper graph shows an
incomplete subset of dataset h 1 before the recovery, while
the lower graph shows a complete dataset after recovery.
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Fig. 5. Adaptive data recovery of multiple gaps (G1
1, G2

2, G17
3 and G30

4 )
on dataset h 1, employing ARIMA, as STR approach.

Gray shaded areas indicate four gaps. In all datasets by
source 2, we observe several gaps in collected data affecting
data analytics. Therefore, we identify these gaps and artifi-
cially make several gaps with same sizes in the dataset h 1
(precisely, gaps with 1 (G1

1), 2 (G2
2), 17 (G17

3 ) and 30 (G30
4 )

consecutive missing/invalid data values). Then, these gaps
are recovered using the proposed mechanism, and forecast
accuracy is evaluated using MAPE. The black solid line
represents the actual state of a dataset. The black dashed
line shows actual data for corresponding gaps, while the
red solid line represents predicted values of missing/invalid
data, calculated using forecasting techniques. In this case,
multiple gaps are automatically recovered using ARIMA,
representing the STR scenario. Sensor-based time series,
as shown in the first sub-figure, can contain different be-
haviors from stationary to trend and volatile patterns. For
this reason, the MAPE of reconstructed gaps G1

1, G2
2 and

G17
3 are significantly low, 0.1843%, 0.1317% and 0.3366%

respectively, while the MAPE for the G30
4 is 2.6797%. We

also notice a direct relationship between gap length and
forecasting error. Results show that our mechanism is able
to recover all gaps with running time of 0.68s. Moreover,
based on the proposed mechanism, multiple techniques can
be involved in the recovery process of each gap separately.
MTR is employed by the mediator component in Section 6.4.

6.3 Storage Management Process
We simulate edge storage management with a fixed amount
of data. We use Algorithm 4 for appropriate cluster selec-
tion. Dataset h 1 is shown in Figure 6 and represents 3
cycles of edge storage management. In the first cycle, the
same data from the data recovery process are used. Further,
in the second and third cycles, we set, in addition to data
coming from the previous cycle, the upcoming amount of
data on 144 (5min interval for 12h) data points per turn.
Also, we define some rules to simulate the specification list.
Forecast horizon fh is set to 12 data points, representing
one hour (12 · 5min) for which forecasts are calculated. fh
is fixed in the current cycle, while the user can change
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(b) Cycle 2
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(c) Cycle 3

Fig. 6. Evaluation of edge storage management on h 1 dataset - cycles 1-3 showing available dataset (upper graphs) and stable clusters of forecast
accuracies (lower graphs). Vertical blue dotted line represents retained data points.
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Fig. 7. Released/retained data, appropriate cluster accuracy, clustered
forecast accuracies percentage of Algorithm 5 after 5 cycles.

the desired fh in the specification list. Then, we consider
the threshold CLth for identifying stable accuracy clusters
of 90%, since the proposed framework targets near real-
time decision-making in IoT applications and we expect
accurate MAPA measures due to the short fh comparing
to the available dataset size. Regarding Figure 6, the upper
graph represents the original dataset. The vertical blue
dotted line represents the data management decision after
the procedures in lower graphs. The lower graphs represent
the result after applying the forecast method and validating
the principle for multiple forecast iterations on the available
dataset. In MAPA measurements, orange areas are stable
clusters, while green areas are selected appropriate clusters.
The last 12 data points are test data, while the rest is used
in different variations to predict fh. In the first cycle, the
algorithm finds an appropriate cluster in a range between 68
and 108 available data points, corresponding to the cluster
between data indexes 168 and 208 in our original dataset
(upper graph). Central index of that cluster indicates that
data management will release data points in range 1-188,
respectively, indexes in range 189-288 will retain in the edge
storage. The process repeats for each next cycle. Figure 7
summarizes all 5 cycles. Figure 7a shows both, released
and retained data per each cycle, while Figure 7b shows
the accuracy of the selected appropriate cluster CLap and
the percentage of clustered MAPA values (lower graphs in
Figure 6) per cycle. In Table 3, all 5 cycles are averaged and
compared among datasets in Table 2. The results show that

TABLE 3
Mean Results of 5 Storage Management Cycles per Dataset

Dataset Retain. Retain. [%] Clusters Clust. [%] Iterations CLap Time

h 1 74 31.4 3.2 72.73 33 99.04 2.48
h 2 63.4 33.4 3.8 65.06 33.8 99.77 2.53
h 3 94.6 42.8 4 59.89 34.6 96.90 3.09
b 1 69.8 35.2 3.2 73.88 33.8 99.99 2.26
b 2 97.2 44.6 3.6 81.24 34.4 99.20 3.10
b 3 137.2 52 3.4 61.43 33.6 98.05 2.62

on average 39.9% of data points can be retained, while keep-
ing the appropriate cluster CLap accuracy, depending on
algorithms’ parameters. Generally, we can find appropriate
clusters with accuracy around 98.83% and clustered MAPA
measurements above 50%, based on approximately 34 mul-
tiple forecast iterations. Results show that our mechanism
can achieve user-defined accuracy using less data.

6.4 Mediator Process

In Section 4.3, we define two methods for data recovery:
STR and MTR. Section 6.2 describes STR scenario, where
each gap is recovered with a single technique, that uses data
points preceding each gap as input. For the second method,
we employ PRMs, used by the recovery mechanism to select
the recommended range of required data points and recom-
mended recovery method. In Figure 8, for each number of
missing values from 1 to 144, the algorithm finds recom-
mended range of required data points by finding stable clus-
ters (Algorithm 3) and calculating the most accurate cluster.
The original algorithm is modified by considering stable
clusters with the highest forecast accuracy (see Definition 6).
The blue line shows the upper border of the cluster, while
the green line its lower. We apply ETS and ARIMA, and the
method with the highest accuracy is selected. Figure 8(a-
f) shows PRMs for all datasets. ETS results are in yellow,
while ARIMA in grey. For each selected range of required
data points, we show MAPA value in orange. The mediator
component stores completed PRMs, and once the monitor-
ing component detects a gap, the mediator recommends a
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Fig. 8. Projection recovery maps for six evaluated datasets.

TABLE 4
Comparison of PRM-based Multiple Technique Recovery (MTR) vs Single Technique Recovery (STR) for four gaps on six datasets

Datasets h 1-STR h 1-PRM h 2-STR h 2-PRM h 3-STR h 3-PRM b 1-STR b 1-PRM b 2-STR b 2-PRM b 3-STR b 3-PRM

Runtime [s] 0.68 2.47 0.98 0.83 0.97 1.62 0.89 0.75 1.2 1.1 1.08 0.92
MAPE 0.8331 0.8061 0.4919 0.3476 13.3229 11.789 0.0084 0.0029 0.9377 0.9321 0.767 0.7836

range of required data points and a forecasting method for
recovery. In case there is not enough data in edge storage,
mediator component retrieves data from the cloud, storing
them for the time of data recovery. We test data recovery
with 4 defined gaps (see Section 6.2) using STR as a baseline.
In Table 4, we compare running time and MAPE between
STR and PRM-based MTR. STR achieves running time of
0.97s on average, while PRM-based recovery can achieve
up to 65.48% less error (e.g., dataset b 1) and only 31.96%
more time on average compared to STR. Using PRMs, we
can improve at least one objective or both in some cases.

7 RELATED WORK

Data management. Authors in [35] discuss an IoT data man-
agement framework, focusing on data collection, storage,
and processing. [36] targets the resilience and privacy of
sensitive data in delay tolerant networks. Other solutions
target resilient edge systems for IoT data management
and cloud, focusing on system resource management [2],
location-based energy control [4], network congestion [14],
security [15] or data integrity [37]. Others [7], [21], [38],
describe the interplay and communication models for cloud
and IoT resources due to growing data streaming and in-
creasing latency issues of smart sensors. These works do
not discuss critical decision-making processes at the edge.

Data science. Typical data recovery methods are based
on cubic interpolation [39], Singular Spectrum Analysis [40]
or Lomb-Scargle method [41]. [42] uses univariate imputa-
tion for air pollution data, considering fixed size gaps. All
these works either do not cover IoT scenario or employ a
single specific method for recovery of various gap lengths,
despite diverse data characteristics. Time series forecasting
has wide application in predictive data analytics. Authors
in [25] describe time series forecast methods, including
a self-adaptive approach for method selection based on
users’ forecasting objectives. The use of different methods is
motivated by different data characteristics before each gap.
Methods like ARIMA and ETS [27], [43], are very suitable
for near real-time decisions in IoT, since they do not require
much user interaction. Further, despite scenarios where data
generation is triggered by certain events, here we focus on
regularly time-stamped measurements. However, our EDM-
Frame is designed in a generic way, such that depending
on the application context and sensor data characteristics,
different methods can be utilized for both data recovery
mechanism and adaptive edge storage management.

Storage management. Micro data centers are described
in [44]. The problem of reducing data transmission at the
edge nodes, such as micro data centers, has been discussed
by several works. In [45], a solution for network-edge data
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reduction for IoT devices is presented, without considering
latency requirements of IoT applications and improvement
of data quality by using different forecasting techniques.
Paper [46] proposes a dynamic compression-based tech-
nique for sensor data. Works like [47], focus on data storage
structure, memory allocation strategy, and data compression
to improve storage capacity. According to Sensor-Cloud In-
frastructure [18], it is possible to employ service innovation
to accelerate decision-making. These challenges have been
considered from traditional IoT and cloud perspectives [6],
[12], but cannot be used due to edge limited storage.

Industrial frameworks. Collection and data analysis at the
edge is the basis of industrial cloud platforms such as AWS
IoT Greengrass (https://aws.amazon.com/greengrass/),
which performs data storage on the cloud, rather than on
the edge; Azure IoT Edge (https://azure.microsoft.com/
en-us/services/iot-edge/) employs containers to package
modules and custom logic at the edge. AWS IoT Ana-
lytics (https://docs.aws.amazon.com/iotanalytics/) offers
remote device management, optimized IoT data storage,
and time series analytics, enabling end-to-end workflow au-
tomation for large amounts of data and connecting IoT de-
vices with cloud applications. Eclipse Kura (https://www.
eclipse.org/kura/) represents a reference IoT Edge frame-
work for building IoT gateways, incorporating networking
protocols, and data services, allowing connectivity of IoT
devices to their cloud platform. These approaches focus
on fully managed workload services instead of edge data
management on limited storage and adaptive data recovery
with multiple techniques. However, they offer a possibility
to incorporate custom logic for it, such as EDMFrame.

8 CONCLUSIONS AND FUTURE WORK

Edge analytics faces us with the problems of making accu-
rate and near real-time decisions based on limited and often
incomplete data. Such issues require an efficient edge data
management solution considering the impact on quality of
decision-making processes for IoT systems. We introduce
EDMFrame, a framework for edge data management fea-
turing a mechanism for recovery of multiple gaps using
both STR and PRM-based MTR recovery, and a novel ap-
proach for accurate decision-making using limited storage
resources. Results show that EDMFrame is able (i) to recover
gaps of various lengths by incorporating recovery cycles,
achieving running time of 0.97s on average, while PRM-
based recovery achieves up to 65.48% less error than with
STR; (ii) to retain data points by 39.9% on average, while
obtaining prediction accuracy around 98.83%. However,
utilized methods such as ARIMA expect historical and regu-
larly time-stamped data, and they are not often appropriate
for some IoT streaming cases in which data generation and
collection are triggered by certain events. Also, current PRM
calculation requires a predefined number of consecutive gap
lengths, posing obstacles in extreme cases of big gap lengths
expected. In future work, we will extend EDMFrame ad-
dressing these limitations by investigating Recurrent Neural
Networks for time series with irregular timestamps, and
considering interpolation of ranges allowing PRM calcu-
lation for dynamic IoT cases. For future IoT services, it is
crucial to make fast decisions as in smart cities requiring

distributed ML at the edge, e.g., in the case of consistent
ML models that must be updated when data streams evolve
over time, posing critical issues to observe correct data at
the right time [32]. Hence, we also plan to explore using
EDMFrame for reliable distributed ML at the edge.
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